Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33588295

RESUMEN

Human African Trypanosomiasis (HAT) is a disease of major economic importance in Sub-Saharan Africa. The HAT is caused by Trypanosoma brucei rhodesiense (Tbr) parasite in eastern and southern Africa, with suramin as drug of choice for treatment of early stage of the disease. Suramin treatment failures has been observed among HAT patients in Tbr foci in Uganda. In this study, we assessed Tbr parasite strains isolated from HAT patients responsive (Tbr EATRO-232) and non-responsive (Tbr EATRO-734) to suramin treatment in Busoga, Uganda for 1) putative role of suramin resistance in the treatment failure 2) correlation of suramin resistance with Tbr pathogenicity and 3) proteomic pathways underpinning the potential suramin resistance phenotype in vivo. We first assessed suramin response in each isolate by infecting male Swiss white mice followed by treatment using a series of suramin doses. We then assessed relative pathogenicity of the two Tbr isolates by assessing changes pathogenicity indices (prepatent period, survival and mortality). We finally isolated proteins from mice infected by the isolates, and assessed their proteomic profiles using mass spectrometry. We established putative resistance to 2.5 mg/kg suramin in the parasite Tbr EATRO-734. We established that Tbr EATRO-734 proliferated slower and has significantly enriched pathways associated with detoxification and metabolism of energy and drugs relative to Tbr EATRO-232. The Tbr EATRO-734 also has more abundantly expressed mitochondrion proteins and enzymes than Tbr EATRO-232. The suramin treatment failure may be linked to the relatively higher resistance to suramin in Tbr EATRO-734 than Tbr EATRO-232, among other host and parasite specific factors. However, the Tbr EATRO-734 appears to be less pathogenic than Tbr EATRO-232, as evidenced by its lower rate of parasitaemia. The Tbr EATRO-734 putatively surmount suramin challenges through induction of energy metabolism pathways. These cellular and molecular processes may be involved in suramin resistance in Tbr.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Masculino , Ratones , Proteómica , Suramina/farmacología , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana/tratamiento farmacológico , Uganda/epidemiología
2.
Parasit Vectors ; 14(1): 1, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388087

RESUMEN

BACKGROUND: Insect growth regulators (IGRs) can control insect vector populations by disrupting growth and development in juvenile stages of the vectors. We previously identified and described the curry tree (Murraya koenigii (L.) Spreng) phytochemical leaf extract composition (neplanocin A, 3-(1-naphthyl)-L-alanine, lumiflavine, terezine C, agelaspongin and murrayazolinol), which disrupted growth and development in Anopheles gambiae sensu stricto mosquito larvae by inducing morphogenetic abnormalities, reducing locomotion and delaying pupation in the mosquito. Here, we attempted to establish the transcriptional process in the larvae that underpins these phenotypes in the mosquito. METHODS: We first exposed third-fourth instar larvae of the mosquito to the leaf extract and consequently the inherent phytochemicals (and corresponding non-exposed controls) in two independent biological replicates. We collected the larvae for our experiments sampled 24 h before peak pupation, which was 7 and 18 days post-exposure for controls and exposed larvae, respectively. The differences in duration to peak pupation were due to extract-induced growth delay in the larvae. The two study groups (exposed vs control) were consequently not age-matched. We then sequentially (i) isolated RNA (whole larvae) from each replicate treatment, (ii) sequenced the RNA on Illumina HiSeq platform, (iii) performed differential bioinformatics analyses between libraries (exposed vs control) and (iv) independently validated the transcriptome expression profiles through RT-qPCR. RESULTS: Our analyses revealed significant induction of transcripts predominantly associated with hard cuticular proteins, juvenile hormone esterases, immunity and detoxification in the larvae samples exposed to the extract relative to the non-exposed control samples. Our analysis also revealed alteration of pathways functionally associated with putrescine metabolism and structural constituents of the cuticle in the extract-exposed larvae relative to the non-exposed control, putatively linked to the exoskeleton and immune response in the larvae. The extract-exposed larvae also appeared to have suppressed pathways functionally associated with molting, cell division and growth in the larvae. However, given the age mismatch between the extract-exposed and non-exposed larvae, we can attribute the modulation of innate immune, detoxification, cuticular and associated transcripts and pathways we observed to effects of age differences among the larvae samples (exposed vs control) and to exposures of the larvae to the extract. CONCLUSIONS: The exposure treatment appears to disrupt cuticular development, immune response and oxidative stress pathways in Anopheles gambiae s.s larvae. These pathways can potentially be targeted in development of more efficacious curry tree phytochemical-based IGRs against An. gambiae s.s mosquito larvae.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/genética , Perfilación de la Expresión Génica , Larva/efectos de los fármacos , Murraya/química , Fitoquímicos/farmacología , Animales , Biología Computacional , Femenino , Insecticidas/farmacología , Larva/genética , Redes y Vías Metabólicas/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Fitoquímicos/química , Hojas de la Planta/química
3.
Sci Rep ; 9(1): 18355, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31798006

RESUMEN

The fruit fly species, Ceratitis rosa sensu stricto and Ceratitis quilicii, are sibling species restricted to the lowland and highland regions, respectively. Until recently, these sibling species were considered as allopatric populations of C. rosa with distinct bionomics. We used deep Next Generation Sequencing (NGS) technology on intact guts of individuals from the two sibling species to compare their transcriptional profiles and simultaneously understand gut microbiome and host molecular processes and identify distinguishing genetic differences between the two species. Since the genomes of both species had not been published previously, the transcriptomes were assembled de novo into transcripts. Microbe-specific transcript orthologs were separated from the assembly by filtering searches of the transcripts against microbe databases using OrthoMCL. We then used differential expression analysis of host-specific transcripts (i.e. those remaining after the microbe-specific transcripts had been removed) and microbe-specific transcripts from the two-sibling species to identify defining species-specific transcripts that were present in only one fruit fly species or the other, but not in both. In C. quilicii females, bacterial transcripts of Pectobacterium spp., Enterobacterium buttiauxella, Enterobacter cloacae and Klebsiella variicola were upregulated compared to the C. rosa s.s. females. Comparison of expression levels of the host transcripts revealed a heavier investment by C. quilicii (compared with C. rosa s.s.) in: immunity; energy production; cell proliferation; insecticide resistance; reproduction and proliferation; and redox reactions that are usually associated with responses to stress and degradation of fruit metabolites.


Asunto(s)
Microbioma Gastrointestinal/genética , Interacciones Huésped-Patógeno/genética , Tephritidae/genética , Animales , Enterobacter cloacae/clasificación , Enterobacter cloacae/genética , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Regulación de la Expresión Génica/genética , Klebsiella/clasificación , Klebsiella/genética , Pectobacterium/clasificación , Pectobacterium/genética , Filogenia , Especificidad de la Especie , Tephritidae/microbiología , Transcripción Genética
4.
Parasit Vectors ; 11(1): 380, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970164

RESUMEN

BACKGROUND: The tsetse transmitted parasitic flagellate Trypanosoma congolense causes animal African trypanosomosis (AAT) across sub-Saharan Africa. AAT negatively impacts agricultural, economic, nutritional and subsequently, health status of the affected populace. The molecular mechanisms that underlie T. congolense's developmental program within tsetse are largely unknown due to considerable challenges with obtaining sufficient parasite cells to perform molecular studies. METHODS: In this study, we used RNA-seq to profile T. congolense gene expression during development in two distinct tsetse tissues, the cardia and proboscis. Indirect immunofluorescent antibody test (IFA) and confocal laser scanning microscope was used to localize the expression of a putative protein encoded by the hypothetical protein (TcIL3000_0_02370). RESULTS: Consistent with current knowledge, genes coding several variant surface glycoproteins (including metacyclic specific VSGs), and the surface coat protein, congolense epimastigote specific protein, were upregulated in parasites in the proboscis (PB-parasites). Additionally, our results indicate that parasites in tsetse's cardia (C-parasites) and PB employ oxidative phosphorylation and amino acid metabolism for energy. Several genes upregulated in C-parasites encoded receptor-type adenylate cyclases, surface carboxylate transporter family proteins (or PADs), transport proteins, RNA-binding proteins and procyclin isoforms. Gene ontology analysis of products of genes upregulated in C-parasites showed enrichment of terms broadly associated with nucleotides, microtubules, cell membrane and its components, cell signaling, quorum sensing and several transport activities, suggesting that the parasites colonizing the cardia may monitor their environment and regulate their density and movement in this tissue. Additionally, cell surface protein (CSP) encoding genes associated with the Fam50 'GARP', 'iii' and 'i' subfamilies were also significantly upregulated in C-parasites, suggesting that they are important for the long non-dividing trypomastigotes to colonize tsetse's cardia. The putative products of genes that were upregulated in PB-parasites were linked to nucleosomes, cytoplasm and membrane-bound organelles, which suggest that parasites in this niche undergo cell division in line with prior findings. Most of the CSPs upregulated in PB-parasites were hypothetical, thus requiring further functional characterization. Expression of one such hypothetical protein (TcIL3000_0_02370) was analyzed using immunofluorescence and confocal laser scanning microscopy, which together revealed preferential expression of this protein on the entire surface coat of T. congolense parasite stages that colonize G. m. morsitans' proboscis. CONCLUSION: Collectively, our results provide insight into T. congolense gene expression profiles in distinct niches within the tsetse vector. Our results show that the hypothetical protein TcIL3000_0_02370, is expressed on the entire surface of the trypanosomes inhabiting tsetse's proboscis. We discuss our results in terms of their relevance to disease transmission processes.


Asunto(s)
Transcriptoma , Trypanosoma congolense/genética , Trypanosoma congolense/fisiología , Moscas Tse-Tse/parasitología , África del Sur del Sahara/epidemiología , Animales , Perfilación de la Expresión Génica , Insectos Vectores/parasitología , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Análisis de Secuencia de ARN , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/transmisión
5.
PLoS Pathog ; 14(4): e1006972, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29614112

RESUMEN

Arthropod vectors have multiple physical and immunological barriers that impede the development and transmission of parasites to new vertebrate hosts. These barriers include the peritrophic matrix (PM), a chitinous barrier that separates the blood bolus from the midgut epithelia and modulates vector-pathogens interactions. In tsetse flies, a sleeve-like PM is continuously produced by the cardia organ located at the fore- and midgut junction. African trypanosomes, Trypanosoma brucei, must bypass the PM twice; first to colonize the midgut and secondly to reach the salivary glands (SG), to complete their transmission cycle in tsetse. However, not all flies with midgut infections develop mammalian transmissible SG infections-the reasons for which are unclear. Here, we used transcriptomics, microscopy and functional genomics analyses to understand the factors that regulate parasite migration from midgut to SG. In flies with midgut infections only, parasites fail to cross the PM as they are eliminated from the cardia by reactive oxygen intermediates (ROIs)-albeit at the expense of collateral cytotoxic damage to the cardia. In flies with midgut and SG infections, expression of genes encoding components of the PM is reduced in the cardia, and structural integrity of the PM barrier is compromised. Under these circumstances trypanosomes traverse through the newly secreted and compromised PM. The process of PM attrition that enables the parasites to re-enter into the midgut lumen is apparently mediated by components of the parasites residing in the cardia. Thus, a fine-tuned dialogue between tsetse and trypanosomes at the cardia determines the outcome of PM integrity and trypanosome transmission success.


Asunto(s)
Cardias/parasitología , Insectos Vectores , Trypanosoma/patogenicidad , Tripanosomiasis/transmisión , Moscas Tse-Tse/parasitología , Animales , Cardias/inmunología , Tracto Gastrointestinal/parasitología , Glándulas Salivales/parasitología , Tripanosomiasis/inmunología , Moscas Tse-Tse/inmunología
6.
PLoS Negl Trop Dis ; 11(11): e0006057, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29155830

RESUMEN

Tsetse flies (Glossina spp.) transmit parasitic African trypanosomes (Trypanosoma spp.), including Trypanosoma congolense, which causes animal African trypanosomiasis (AAT). AAT detrimentally affects agricultural activities in sub-Saharan Africa and has negative impacts on the livelihood and nutrient availability for the affected communities. After tsetse ingests an infectious blood meal, T. congolense sequentially colonizes the fly's gut and proboscis (PB) organs before being transmitted to new mammalian hosts during subsequent feedings. Despite the importance of PB in blood feeding and disease transmission, little is known about its molecular composition, function and response to trypanosome infection. To bridge this gap, we used RNA-seq analysis to determine its molecular characteristics and responses to trypanosome infection. By comparing the PB transcriptome to whole head and midgut transcriptomes, we identified 668 PB-enriched transcripts that encoded proteins associated with muscle tissue, organ development, chemosensation and chitin-cuticle structure development. Moreover, transcripts encoding putative mechanoreceptors that monitor blood flow during tsetse feeding and interact with trypanosomes were also expressed in the PB. Microscopic analysis of the PB revealed cellular structures associated with muscles and cells. Infection with T. congolense resulted in increased and decreased expression of 38 and 88 transcripts, respectively. Twelve of these differentially expressed transcripts were PB-enriched. Among the transcripts induced upon infection were those encoding putative proteins associated with cell division function(s), suggesting enhanced tissue renewal, while those suppressed were associated with metabolic processes, extracellular matrix and ATP-binding as well as immunity. These results suggest that PB is a muscular organ with chemosensory and mechanosensory capabilities. The mechanoreceptors may be point of PB-trypanosomes interactions. T. congolense infection resulted in reduced metabolic and immune capacity of the PB. The molecular knowledge on the composition and putative functions of PB forms the foundation to identify new targets to disrupt tsetse's ability to feed and parasite transmission.


Asunto(s)
Estructuras Animales/parasitología , Trypanosoma congolense/crecimiento & desarrollo , Moscas Tse-Tse/parasitología , Animales , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...